STM32: Difference between revisions
imported>Rmarko (update) |
imported>Rmarko (black magic) |
||
Line 182: | Line 182: | ||
* http://embdev.net/articles/STM_Discovery_as_Black_Magic_Probe | * http://embdev.net/articles/STM_Discovery_as_Black_Magic_Probe | ||
* https://esden.net/2014/12/29/black-magic-discovery/ | * https://esden.net/2014/12/29/black-magic-discovery/ | ||
{{cmd|code= | |||
# make PROBE_HOST=stlink | |||
# flashing blackmagic_dfu via black magic probe | |||
arm-none-eabi-gdb --ex 'target extended-remote /dev/ttyACM0' blackmagic_dfu | |||
monitor swdp_scan | |||
attach 1 | |||
monitor option erase | |||
# restart target so it unlocks, repeat up to 'monitor option erase' then issue | |||
load | |||
# restart target, it should boot to black magic dfu | |||
# [ +0.000002] usb 1-1.2: Product: Black Magic (Upgrade) for STLink/Discovery, (Firmware v1.6-rc0-257-gd6e2977) | |||
# upload black magic via dfu | |||
dfu-util -s 0x08002000:leave -D blackmagic.bin | |||
}} | |||
== Links == | == Links == |
Revision as of 16:49, 1 January 2017
STM32 programming
Boot mode configuration
<syntaxhighlight lang="bash">BOOT1 BOOT0 Boot mode Address
x 0 Main Flash memory 0x8000000 0 1 System memory (built-in bootloader) 0x1FFFB000 1 1 Embedded SRAM 0x20000000
in Main flash memory and System memory boot modes address is aliased to 0x0</syntaxhighlight>
STM32F103C86T dev board boot pins
- https://www.aliexpress.com/item/Free-Shipping-STM32F103C8T6-ARM-STM32-Minimum-System-Development-Board-Module-Forarduino/32525208361.html
- http://www.ebay.com/itm/STM32F103C8T6-ARM-STM32-Minimum-System-Development-Board-Module-For-Arduino-DHUS-/321569700934?pt=LH_DefaultDomain_0&hash=item4adf0c3c46
Legend
o o o BOOT0 o o o BOOT1 --- |R| Reset button ---
Boot to bootloader (built-in bootloader)
- Allows flashing over USART
o [=] [=] o --- |R| ---
Boot to main flash (user code)
[=] o o o o --- |R| ---
Flashing
- Flashing is done via USART1 (A9 TX A10 RX)
Converting Elf to Bin
Required if you only have elf files produced by your toolchain - stm32flash accepts only *.bin files.
<syntaxhighlight lang="bash"> arm-none-eabi-objcopy -O binary miniblink.elf miniblink.bin </syntaxhighlight>
Using stm32flash
Test connection with
<syntaxhighlight lang="bash"> stm32flash /dev/ttyUSB0 </syntaxhighlight>
Flash and run from 0x0
<syntaxhighlight lang="bash"> stm32flash /dev/ttyUSB0 -w miniblink.bin -g 0x0 </syntaxhighlight>
Pinout
Libraries
libopencm3
Minimalistic firmware library/framework.
Bootstrapping on Fedora
Library
<syntaxhighlight lang="bash">dnf install arm-none-eabi* mkdir embedded git clone https://github.com/libopencm3/libopencm3 cd libopencm3
- Edit TARGETS in Makefile and keep only targets that you need (or just stm32/f1 for example).
make -j8 cd ..</syntaxhighlight>
DFU bootloader
This is a bootloader for Device Firmware Update via USB (stm32/f1).
<syntaxhighlight lang="bash">git clone https://git.48.io/libopencm3_dfu cd libopencm3_dfu
- connect JTAG
make flash
- or flash via USART & stm32flash, see flashing section above
make stm32flash</syntaxhighlight>
Sample application
For use with DFU bootloader (stm32/f1).
<syntaxhighlight lang="bash">git clone https://git.48.io/libopencm3_template cd libopencm3_template
- flash via dfu
make dfu
- or with JTAG
make flash</syntaxhighlight>
Library examples
<syntaxhighlight lang="bash">git clone https://github.com/libopencm3/libopencm3-examples
- Either fetch git submodule pointing to libopencm3 and repeat steps in Library section
- or symlink libopecm3 dir to previously built libopencm3
cd libopencm3-examples rmdir libopencm3 ln -s <PATH_TO-->/libopencm3 .
- try building miniblink example
cd examples/stm32/f1/stm32-h103/miniblink make</syntaxhighlight>
Troubleshooting
- use make V=1 when make fails
- make sure openocd is not running when doing 'make flash'
Locked device
If you can't flash and 'make V=1 flash' reports something similar
<syntaxhighlight lang="bash">Info : Device Security Bit Set stm32x unlocked</syntaxhighlight>
You need to unlock your device first (with JTAG):
<syntaxhighlight lang="bash">openocd -f jlink_swd_f103.cfg telnet 127.0.0.1 4444
- in telnet issue:
stm32f1x unlock 0</syntaxhighlight>
Debugging
<syntaxhighlight lang="bash"># add to Makefile to generate debuginfo CXXFLAGS = -g
- run openocd
openocd -f jlink_swd_f103.cfg
- connect to openocd via gdb
arm-none-eabi-gdb --ex 'target remote localhost:3333' <EXECUTABLE>.elf
- Use following commands when in gdb (more at http://www.yolinux.com/TUTORIALS/GDB-Commands.html)
- c (continue), stop execution with Ctrl-C
- bt (stacktrace)
- b (break), e.g. 'b main' or 'b template.c:360'</syntaxhighlight>
Black Magic probe
Running BMP on Discovery boards
- http://embdev.net/articles/STM_Discovery_as_Black_Magic_Probe
- https://esden.net/2014/12/29/black-magic-discovery/
<syntaxhighlight lang="bash"># make PROBE_HOST=stlink
- flashing blackmagic_dfu via black magic probe
arm-none-eabi-gdb --ex 'target extended-remote /dev/ttyACM0' blackmagic_dfu monitor swdp_scan attach 1 monitor option erase
- restart target so it unlocks, repeat up to 'monitor option erase' then issue
load
- restart target, it should boot to black magic dfu
- [ +0.000002] usb 1-1.2: Product: Black Magic (Upgrade) for STLink/Discovery, (Firmware v1.6-rc0-257-gd6e2977)
- upload black magic via dfu
dfu-util -s 0x08002000:leave -D blackmagic.bin</syntaxhighlight>
Links
DMA
DAC
Docs
- STM32 F3 Discovery (STM32F303VC) Manual
- STM32F303VC
- STM32F334
- Getting started with STM32F3 series
- Migrating from F1 to F3 series
Calculating Timer Frequency
MUCH WIP
period_target_ms = p1 period_hz = p2
1000ms / p1 = p2
E.g. for 20ms (servo) period
1000ms / 20 ms = 50 hz
cpu_freq = 72Mhz prescale = 72
72MHz / 72 = 1Mhz
This increases out count register CNT by 1 000 000 each second. To calculate what is the correct value for the ARR register (which defines the period), we divide the result of the prescaled frequency by the intended frequency for our period:
1 000 000 Hz / 50 Hz = 20 000
Now every time the CNT register is increased by one, this is the equivalent to 1us. The duty cycle now could by set easily. E.g. for a 1.5ms duty cycle we set the CCRx register to 1500.
Stepper
driver_max_duty = 250khz